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Abstract   This study suggests a new approach for identifying core robot tech-nologies 

based on technological cross-impact. Specifically, the approach applies data mining 

techniques and multi-criteria decision-making methods to the co-classification 

information of registered patents on the robots. First, a cross-impact matrix is constructed 

with the confidence values by applying association rule mining (ARM) to the co-

classification information of patents. Analytic network process (ANP) is applied to the 

co-classification frequency matrix for deriving weights of each robot technology. Then, 

a technique for order performance by similarity to ideal solution (TOPSIS) is employed 

to the derived cross-impact matrix and weights for identifying core robot technologies 

from the overall cross-impact perspective. It is expected that the proposed approach 

could help robot technology managers to formulate strategy and policy for technology 

planning of robot area. 

 

Keywords   Core robot technology, patent co-classification, cross-impact analysis, 

association rule mining, analytic network process 
 

I. Introduction 
 
Recently, interest in the 4th industrial revolution has increased (Jeon and Suh, 

2017) and among various innovative technologies, interest in robots is 

increasing. In the 20th century, robots mainly served the role of automated 

equipment in factories in many industries (Choi et al., 2014; Park et al., 2009; 

Baeg et al., 2008; Lee et al., 2005). In the high-tech industry of the 21st century, 

however, robots are quickly evolving into an essential convenience for our 

civilization, be it at homes or in offices. The value of the robotics industry was 

calculated at approximately $8.4 billion in 2011 and has grown steadily since 

then. With the industry projected to grow at an annual rate of 12.5% over the 
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2010-2020 period, to be worth $30.3 billion in 2020, robot technology is clearly 

an area with high growth potential (Jung, 2008). Technologically advanced 

countries are taking note of this expansion trend in the robotics industry and are 

accordingly focusing their efforts on the development of various robot 

technologies (EUROP, 2009; Shin, 2012).  

Unlike in the past, where industrial robots were its primary example, the 

robotics industry is now characterized by a gradual confluence of traditional 

industries and elements from nanotechnology (NT), biotechnology (BT) and 

information technology (IT) to cater to a new market according to consumer 

needs (Seo and Ahn, 2009). In order to possess and retain a competitive 

advantage in these circumstances, identifying the overall structure of robot 

technology and the relations among its components is very important. This refers 

to the activity of overseeing the trends in and the development of robot 

technology by identifying the sub-technologies of which robot technology is 

composed and the manner in which these sub-technologies affect one another. 

Through this activity, companies can efficiently and systematically manage their 

R&D portfolios, which leads to the assumption and maintenance of dominance 

in the competitive market (EIRMA, 2000).
 

The technological structure and relationship identification is mainly 

conducted with patent analysis (Trajtenberg et al., 1997). Not only is it the case 

that approximately 80% of all the technological knowledge (Blackman, 1995) 

is patented, patents are also convenient for accessing and analyzing technologies 

by researching various types of official and commercial databases. For these 

reasons, patents are recognized as providing useful information for 

technological analysis and R&D management (Yoon and Park, 2004) and many 

studies have tried to analyze technological relationships by analyzing patent 

information. 
 

Among the components of patent information, citation information is most 

widely used to analyze technological relationships. The basic assumption of 

citation analysis is that because the knowledge of a cited patent flows into the 

citing patent, there exists a technological link between the two patents. Citation 

analysis has several advantages, such as usefulness, accessibility and 

convenience, but has certain attendant limitations. For example, since the 

average time-difference between citing and cited patents is more than 10 years 

(Hall et al., 2001), there is a fundamental limit in analyzing technological 

relationships according to the time difference. Furthermore, because only the 

citing-cited relationship between individual patents is taken into account, it is 

difficult to identify a more informative technological relationship between two 

patents as well as the characteristics in the technological field perspective (Yoon 

and Park, 2004).
 

Many proposals for the analysis of technological relationships among patents 

have been presented to address these limitations, such as co-citation (Lai and 
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Wu, 2005; Stuart and Podoly, 1996), co-word (Courtial et al., 1993) and 

keyword vector (Yoon and Park, 2004). However, using co-citation information 

does not solve the problem of the large time difference between the citing and 

the cited patents. Furthermore, both co-word and keyword information relies on 

the researcher’s intuition or judgment for a successful analysis, which makes it 

difficult to derive consistent results. 
 

On the other hand, co-classification has several advantages. Co-classification 

analysis focuses on the technological relations between patents based on the fact 

that they are classified into some technological classes according to their 

technological characteristics (OECD, 1994). It assumes that the frequency with 

which two classification codes are jointly assigned to a patent document can be 

interpreted as the strength of the relationships between the two classification 

codes, in terms of knowledge relationships and spillovers (Breschi et al., 2003). 

Because co-classification analysis is different from citation analysis, since the 

former relies on the technological classification system, co-classification 

analysis can identify the relationship between technologies at various levels and 

not merely at an individual patent level. In other words, because the patent 

classification system generally has a hierarchical structure, technological levels 

can be differentiated in analysis depending on the purpose of a particular study. 

Moreover, errors from the time lag are not relatively significant because the time 

of a patent’s classification information is identical to its registration time.
 

Among the methods utilizing patent co-classification information, technologi-

cal cross-impact analysis (CIA) has been used to identify core technologies 

based on the interrelationships among them. The index for analyzing 

technological cross-impact is called the cross-impact index. However, 

calculating cross-impact index based on big patent data is only possible by 

developing a computer program for this. Moreover, a previous study analyzing 

technological cross-impact based on patent classification focuses only on identi-

fying pairs of technologies with high cross-impact values (Choi et al., 2007) and 

does not consider the overall cross-impact of each technology on other 

technologies on the whole.  

In response to the above issues and considerations, we propose a new method 

to identifying core robot technologies in terms of cross-impact based on patent 

co-classification information by taking into account the interrelationships 

among robot technologies. Our proposed approach is composed of three 

methods: an analytic network process (ANP), association rule mining (ARM) 

and the Technique for Order Performance by Similarity to Ideal Solution 

(TOPSIS). We first use ARM, one of the representative data mining techniques 

for investigating vast databases, to calculate the technological cross-impact 

index. As a confidence in ARM has a form of a conditional probability, the 
formulas of the confidence and the cross-impact index are the same. So we adopt 

it to evaluate the cross-impact of robot technology. Following this, we employ 
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TOPSIS, a multi-criteria decision making method (MCDM), to investigate core 

robot technology with regard to its impact on robot technologies on the whole. 

ANP is applied in order to derive the weight of each criterion for the per-

formance of TOPSIS. 
 

The remainder of this study is organized as follows. In Section 2, we review 

the literature related to patent analysis and introduce the background of ARM, 

ANP and TOPSIS. We present our proposed approach in Section 3 and provide 

an instance of its implementation with a case study in Section 4. In Section 5, 

we conclude and highlight directions for future research. 

 

 

II. Literature Review 

 

1. Patent Analysis  

 
A patent is the primary result of an R&D activity and describes the source and 

characteristics of a new technology. Not only are patents acknowledged as a vast 

and useful data source for technology management-related research, they are 

also utilized as a representative proxy for technological analysis (Grilliches, 

1990). Patents have limits like all other technological data (Ernst, 2003; 

Archibugi and Pianta, 1996; Grilliches, 1990) and there are endless disputes 

over the use of patents in technological analysis. However, as patents facilitate 

quantitative analysis, they are more advantageous than data used for conceptual 

or qualitative analysis. Moreover, patent databases include data on activities in 

most areas of technological innovation. On account of these reasons, patents are 

widely used as data for technological analysis. 
 

The initial method used for patent analysis is a simple comparison among the 

number of patents applied for by different individuals or entities, such as 

countries, companies or fields of technology (Wartburg et al., 2005). In other 

words, the greater the number of patent applications by an individual, the greater 

the importance of that individual. However, there are many cases where patent 

distribution is very asymmetric. Thus, evaluating the importance of an 

individual based simply on the number of patent applications leads to biased 

results in most cases (Harhoff et al., 1999). Moreover, there is a limit in the 

observation of the relationship between individual patents. 
 

Methods that solve the above-mentioned problems are patent citation analysis 

and patent classification analysis. First, patent citation analysis uses the citation 

relationship between two patents based on the assumption that there is a 

technological connection between them because the knowledge of a cited patent 

flows to a citing patent (Narin, 1994). Patent citation analysis can be largely 

distinguished into two classes according to its purpose. The first is a 
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determination of the value of the patent and is based on the number of cited 

patents. Patents that have been cited more than others are determined to have a 

higher technological and economic importance (Breitzman and Thomas, 2002; 

Narin et al., 1987; Trajtenberg, 1990). Many studies use citation number as the 

index for measuring patent quality (Reitzig, 2004; Ernst, 2003; Lanjouw and 

Schankerman, 1999; Hirschey and Richardson, 2001). The second class of 

patent citation analysis is the relationship search between technologies, whereby 

patent citation is used to identify the knowledge transfer of technologies, or their 

technological linkage. Studies related to this include technological overlap 

analysis between cooperative companies (Mowery et al., 1998), proposals for 

new patent classification systems through patent clustering (Lai and Wu, 2005) 

and core technology identification through technology network construction 

(Lee et al., 2009).
 

In contrast, patent classification analysis is based upon a hierarchical system 

of patent classification information in order to categorize patents with complex 

technology information into groups that are easy to understand. All patents are 

classified into one or more categories. Research has shown that classification is 

the most appropriate analysis unit to search for knowledge in a patent (Dibiaggio 

and Nesta, 2005). A patent referee determines the classification of patents and a 

patent is typically part of several categories. There are two primary purposes of 

patent classification analysis. The first is the measurement of relatedness 

between technologies and is based on the assumption that when a patent is 

affiliated with two or more classes, the technologies in each class are related to 

those in the other. Hence, measurement relatedness specifies that the higher the 

number of such patents, the stronger the relationship or similarity between the 

relevant technological fields. The representative index for measuring the 

relatedness between technologies is the cosine index. Cosine index is a form of 

correlation coefficient and evaluates the relatedness between two technologies 

based on a correlation with all other technologies. If the distribution of two 

technologies is the same, the value of the cosine index is 1. The value is 0 when 

there is no coincidence. The representative studies that use cosine index are 

studies by Jaffe (Jaffe, 1986; Jaffe, 1989), who used patents belonging to 

companies in the United States to observe the distribution in 49 technologies 

and to measure the relatedness between them. There are various other studies 

using cosine index, such as the structure identification of science and technology 

(Tijssen, 1992), the analysis of technological knowledge diffusion (Grupp, 1996) 

and the analysis of the relationship between technological distance and 

technology diversification (Breschi et al., 1998).  

The second major purpose of patent classification analysis is technological 

cross-impact analysis. Technological change and progress can occur through 
various events or incidents and cross-impact is the effect of one such incident 

on another. Patents are classified according to function, use, or structure. The 
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impact relationship between technologies is identified by these characteristics. 

The cross-impact index of a technology A and B - Impact(A, B) - is defined as a 

conditional probability: P(B|A)=N(AB)/N(A) (Kim et al., 2011). Here, N(A) 

refers to the total number of patents affiliated to technology A and N(AB)
 
is 

the number of patents affiliated to both technology A and B. The cross-impact 

index has a value between 0 and 1: if the value is near to 1, the impact of 

technology A on technology B is significant.
 

 

2. Association Rule Mining (ARM) 

 
ARM is a data mining technique used to find interesting and useful association 

rules between items in a huge database. An association rule is a phenomenon 

whereby the generation of an item in a transaction leads to the simultaneous 

generation of another item. From a conceptual point of view, there is a strong 

association between simultaneously generated items (Han and Kamber, 2001). 

ARM is widely used in various fields, especially in marketing (Liao and Chen, 

2004), bioinformatics (Creighton and Hahash, 2003), healthcare (Ca and Jiang, 

2003) and finance (Hsieh, 2004).
 

In ARM, the three evaluation criteria for the usefulness of association rules 

are support, confidence and lift, as specified in Table 1. Among the measures in 

Table 1, the meaning of lift is as follows. If the numeric value is greater than 1, 

the possibility of the simultaneous occurrence of two items X and Y is higher 

than that of the separate occurrence of X and Y, and there is a positive 

relatedness between the two. If the numeric value is 1, the probability of both a 

simultaneous and a separate occurrence is the same and the two items are 

considered independent of each other. If the numeric value is less than 1, the 

probability of simultaneous occurrence is higher than the possibility of separate 

occurrence and there is a negative relatedness between the two items. 
 

 
Table 1 Measures for the interestedness of association rules

 
Measure Description Formula 

Support 
In the association rule X→Y, the possibility of simultaneous 

occurrence of X and Y item 
 

Confidence 
In the association rule X→Y, possibility of transaction including X 

to also include Y 
 

Lift In the association rule X→Y, statistical dependence of X and Y  

 

ARM generally progresses at the following two levels (Agrawal and Srikant, 

1984): (1) frequent itemset search: producing a combination of all items with 
over the minsupport value and (2) association rule creation: in the frequent 

( )P X Y

( | )P Y X

( | )

( )

P Y X

P Y
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itemset, selecting rules for minconfidence or standard lift. Of these levels (1) is 

time-consuming and its representative method is an a priori algorithm. 

 

3. Analytic Network Process (ANP) 

 
ANP is a generalization of the analytic hierarchy process (AHP), which is one 

of the most widely used MCDM methods (Saaty, 1996). AHP breaks down a 

problem into several levels of a hierarchical structure and assumes that each 

decision-making element is independent of the others. ANP is an expansion of 

AHP for a problem with dependencies and feedback. In other words, ANP 

converts the hierarchical structure of AHP into a network to facilitate application 

even in instances of complex correlations between decision elements (Meade 

and Sarki, 1999). ANP has recently been applied to patent data for technology 

selection (Shen et al., 2011), core technology identification (Lee et al., 2009; 

Kim et al., 2011), R&D project evaluation (Jung and Seo, 2010) and R&D 

partner selection (Geum et al., 2013). 
 

ANP is generally conducted in four steps (Lee et al., 2009). First, the network 

model is constructed to structure the given problem into a network form. The 

network node is a cluster and the decision-making elements of each cluster can 

affect the elements of other clusters. Arrows depict this relationship. If there is 

a relationship between decision elements of the same cluster, a feedback loop is 

used to signify this. Second, pairwise comparison is used to derive a priority 

vector. The element of each cluster performs pairwise comparison not only on 

the side of impact to another element, but also on the interdependency 

perspective. If a cluster-weighted value is required in order to create the next 

level of supermatrix, a pairwise comparison is carried out between the clusters. 

Further, the eigenvector method is applied to each pairwise comparison matrix 

to derive the partial priority vector it. Third, the supermatrix is constructed and 

converted. It collects all partial priority vectors (submatrix) to form a single large 

matrix. The supermatrix is thus divided into submatrix regions, where each 

submatrix shows the relationship between two clusters. If there is no relationship 

among the clusters, the relevant region is a zero matrix. Given all submatrices, 

the weighted supermatrix is calculated by multiplying weight values of the 

relevant clusters and normalizing for the sum of column in the large matrix to 

be 1. When the sum of the values of all columns in the matrix is 1, multiplying 

this weighted supermatrix infinitely is known to collect the only form (Datta et 

al., 2014). Therefore, the “column stochastic” characteristic of the weighted 

supermatrix becomes a precondition for the construction of the limit supermatrix. 

Moreover, infinite power is performed until the weighted supermatrix is 

collected to derive the limit supermatrix. Finally, the final priority vector is 
derived. The final priority of the alternatives can be obtained by the column 
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vector value in the limit supermatrix and this reflects all direct and indirect 

impact of each element on other each elements. 

 

4. Technique for Order Performance by Similarity to Ideal 

Solution (TOPSIS) 

  
TOPSIS is same as other MCDM methods in that it handles decision problems 

in situations where many criteria and alternatives exist. TOPSIS was first 

proposed by Hwang and Yoon (Hwang and Yoon, 1981). Its greatest advantage 

over other MCDM methods is that the only subjective element required in 

evaluation of alternatives is the weights of the relevant criteria and the focus is 

on evaluating the alternative and not on generating the weights (Olson, 2004). It 

also has the following characteristics (Kim et al., 1997). First, the logic of the 

decision-making of TOPSIS is similar to the principle of human selection. When 

there is an ideal alternative, everyone tries to select it. However, due to realistic 

limits, the most useful viable alternative is selected instead. Second, TOPSIS 

provides a scalar quantity that takes into account both the positive and negative 

ideal alternative. Third, TOPSIS involves simple calculation that can be easily 

programmed through spreadsheets. It is used in various fields, such as 

manufacturing policy evaluation (Cha and Jung, 2003), web resource evaluation 

(Zhu and Buchman, 2002), product design (Lin et al., 2008) and service quality 

evaluation (Tsaur et al., 2002; Mukherjee and Nath, 2005).
 

The TOPSIS procedure is as follows (Hwang and Yoon, 1981): 

 

Step 1. All components of the decision matrix consist of alternatives and 

criteria. In other words, the performance scores are normalized as follows:  
 

(1) 
 

where M refers to the number of alternatives and is the performance score on 

the jth criterion of the ith alternative.  

Step 2. The following criteria of weighted value are multiplied with the prior 

normalized decision matrix for calculating the weighted formal decision matrix: 
 

(2) 
 

where is the weighted value of the jth criterion.  

Step 3. The positive ideal solution (S+) and the negative ideal solution (S-) are 

calculated (Santhanam et al., 2015). 
 

2

1

ij

ij
M

ij

i

x
y

x
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(3) 
 

Step 4. The Euclidean distance between each alternative and the positive ideal 

solution is calculated and the Euclidean distance between each alternative and 

the negative ideal solution is calculated as follows:  
 

(4) 

(5) 
 

where N is the number of criteria. 

 

Step 5. The similarity between each alternatives and the positive ideal solution 

is calculated. The similarity between the ith alternative and the positive ideal 

alternative is defined as follows (Fu et al., 2010):  
 

(6) 
 

Step 6. The order of the alternatives is determined on the basis of the similarity 

of each alternative to the positive ideal solution, which is calculated in Step 5. 

The alternative with a higher similarity value has a higher priority. 

 

 

III. Research Framework 
 
The process of identifying core robot technology using patent co-classification 

information is as follows. First, the patent data for robot technology is collected. 

Second, the cross-impact matrix is built with the confidence values derived by 

applying ARM to the co-classification information of the patent data gathered. 

Third, the weight of each robot technology is derived by carrying out an ANP 

on the co-occurrence matrix created using co-classification frequency 

information. Finally, using the derived weights of robot technologies, TOPSIS 

is performed on the cross-impact matrix to identify the core robot technology. 

Fig. 1 shows the flow of the overall process in this study. The details of the each 

process are described below. 

 

max( ), min( )
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Figure 1 Research process 

 

1. Patent Data Collection 
 
The identification of the affiliation of the relevant robot technology in the 

patent classification system is required prior to collecting patent data. The patent 

classification system is a hierarchical system for classifying and managing 

patents with the consideration of their technological characteristics. The 

technological characteristics of a patent are identified with the patent claim, 

which lists the new features of patents. Because patents generally have two or 

more technological characteristics, they are mostly affiliated with several classes 

in the patent classification system.
 

 

2. Cross-Impact Matrix Construction 
 
A cross-impact matrix is constructed to identify the core robot technology 

from a cross-impact perspective. The matrix is created by allocating cross-

impact index values among all robot technologies calculated by using the co-

classification information of the relevant patent on the matrix cell (Kim, 2016). 

However, a separate program must be used to calculate cross-impact index from 

a large database, such as the patent database. Therefore, we use ARM to derive 

the cross-impact index. Patent classification analysis is similar in its concept to 

a market basket analysis using ARM as follows (Kim et al., 2011). A patent 

referee’s activity to decide the classification of any patent stands for selecting 

the most representative technologies which that patent wishes to describe among 

various technologies, therefore it is much like a customer’s activity to buy the 

most necessary goods among various things. Moreover, patent classification 

information recorded by a patent referee is relevant to the sets of goods 

purchased by the customer. Therefore, the patent, classification action, 

classification and the classification information of individual patents in patent 
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classification analysis correspond to the identifier, transaction, item and the 

itemset, respectively, in ARM. 
 

As described in Section 2.1, the cross-impact index of technology A and B, 

Impact(A, B), can be defined as a conditional probability P(B|A). Because the 

confidence of the association rule A→B in ARM is also defined as P(B|A) , we 

apply ARM to the co-classification information of the gathered patents for 

constructing cross-impact matrix. Table 2 shows the form of the cross-impact 

matrix. Here, Ti indicates the technology from field i and Conf (A→B) refers to 

the confidence value of the association rule A→B (Seo et al., 2016). In other 

words, the value of each cell of the cross-impact matrix is the impact of the 

technology in the relevant row on the technology listed in the relevant column. 

The diagonal values of the matrix are set to 1 because there is a 100% cross-

impact relationship between technologies in the same field.  
 

Table 2 A form of cross-impact matrix 

Technology
 

Technology
 

T1 T2 … Tn 

T1 1 Conf(T1→T2)  Conf(T1→Tn) 

T2 Conf(T2→T1) 1  Conf(T2→Tn) 

…   1  

Tn Conf(Tn→T1) Conf(Tn→T2) … 1 

 

3. Weight Derivation 

 
Performing TOPSIS requires the weight information for the evaluation criteria. 

For this, we apply ANP to the patent co-classification frequency information 

between the robot technologies. After composing the co-classification frequency 

matrix, both the rows and column of which represent technologies, ANP is 

applied by considering the direct and indirect relationships among all robot 

technologies to derive the technology weights. 

The first two steps of ANP - network model construction and pairwise 

comparison & local priority vectors - are not required in our proposed approach 

(Kim, 2012). A network model in ANP is constructed based on expert judgment 

in order to model an abstract decision problem. However, the network in the 

proposed approach is designed on the basis of technological relationships 

represented in the co-classification frequency matrices (Lee et al., 2009). A 

cluster in the ANP network corresponds to an upper level classification and 

elements in one cluster are equivalent to lower lever classifications within an 

upper level classification. Then, in the ANP context, the resulting network 

model only includes alternative clusters, contrary to the general network model 

in the ANP that comprises a goal cluster, criteria clusters and alternative clusters. 
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Therefore, the importance of alternatives is only evaluated with respect to their 

effects or influences on other alternatives, not with respect to some criterion or 

goal. It implicitly assumes that the co-classification frequency between a pair of 

nodes is a proxy for the degree of influence between them. Thus, pairwise 

comparisons are not required and priority vectors can be directly obtained from 

the co-classification frequency matrix. 
 

The supermatrix in ANP is a partitioned matrix consisting in all local priority 

vectors. The co-classification frequency matrix is equivalent to the supermatrix 

because the co-classification frequency matrix is a set of all local priority vectors. 

The weighted supermatrix, each of whose columns sums to one, is constructed 

by transforming the supermatrix. Then the limit supermatrix is derived by 

converging all the columns of the weighted supermatrix the same. This is called 

limit priorities and captures all the direct and indirect effects among robot 

technologies. The weights of each technology can then be determined based on 

the limit priorities of robot technologies.
 

 

4. Core Robot Technology Identification 
 
The core robot technology is identified by employing TOPSIS. For this, the 

technology located on the row and the column of the cross-impact matrix 

indicated in Section III.2 is redefined in the alternative and criteria of decision-

making problem. The weights between robot technologies found in the previous 

step are used for TOPSIS. Through these processes, the overall cross-impact 

relationship among robot technologies the value of each is reflected in the 

evaluation of technological importance. Table 3 is a conceptual schematization 

of the difference in core robot technology derivation before (a) and after (b) the 

application of the MCDM method.  

As seen in Table 3(a), before applying the MCDM method, the quantitative 

cross-impact between robot technologies is used to calculate their technological 

importance. For example, the importance of technology T1 is calculated by the 

sum  of its cross-impacts (R11, R12,‧‧‧, R1n) on other technologies (T1, T2,‧‧‧, 

Tn). As shown in Table 3(b), from the MCDM perspective, the weight of 

technology Wi  is reflected for evaluation (Lee et al., 2017). Therefore, the 

importance of technology T1 is . By analyzing the overall relationship 

among many technologies in this way, each technology can be regarded as both 

an alternative and a criterion, due to which the MCDM method can be applied. 

There are advantages of reflecting simple quantitative relationships as well as 

the values of individual technologies in identifying technological cross-impact. 

 
 
 

1iR

1i iW R
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Table 3 Core robot technology identification through MCDM method 
Technology 

Technology T1 T2 … Tn 
Technological 

importance 

T1 R11 R12  R1n  

T2 R21 R22  R2n  

…     … 

Tn R31 R32  Rnn  

(a) Before MCDM introduction 

 
Standard

 
Alternative

 

T1 
(W1) 

T2 
(W2) 

… 
Tn 

(Wn) 
Technological 

importance 

T1 R11 R12  R1n  

T2 R21 R22  R2n  

…     … 

Tn R31 R32  Rnn  

(b) After MCDM introduction 

 

 

IV. Case Study 
 

1. Patent Data Collection 
 
Patents registered in the United States Patents and Trademark Office (USPTO) 

were selected as the data source for our case study. All patents registered with 

the USPTO are classified by the United States Patent Classification (USPC). 

Each USPC classification consists of a class and a subclass (USPTO, 2006). A 

class identifies a technology in relation to other technologies and a subclass 

categorizes sub-technologies within a class according to their structure and 

function. In the USPC, robot technology is in Class 901. As shown in Table 4, 

Class 901 is composed of 10 subclasses of indent level 0. We used these 

subclasses as our analysis unit. Of the patents affiliated with Class 901, we 

selected as our analysis subjects those applied for until 2012. Using a Java-based 

web document collection/parsing/database input program that we developed, we 

collected patents related to robot technology from the USPTO website and 

stored them in the database. 
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Table 4 Classification of robot technology 
Indent Level 0 Indent Level 1 Indent Level 2 Indent Level 3 

MOBILE ROBOT (1)    

arm MOTION CONTROLLER 
(2) 

Teaching system 

Manual lead through  

Machine driven lead 
through 

 

Communication with 
another machine 

Conveyor  

Robot  

Closed loop (sensor 
feedback controls arm 

movement) 

Sensor physically contacts 
and follows work contour 

 

Mechanically actuated 
present limit 

Cam  

Limit switch  

arm MOVEMENT (SPATIAL) 
(14) 

Jointed arm   

Cartesian (X-Y-Z arm)   

Cylindrical   

Spherical   

DRIVE SYSTEM FOR arm (19) 

With provision for altering 
speed of driven element 

  

Flaccid drive element   

Fluid motor   

Electric motor Stepper motor  

Gearing Including bevel gear  

arm PART (27) Joint Wrist  

END EFFECTOR (30) 

Gripping jaw 

Servo-actuated 

Tactile sensor 

Force feedback 

Proximity 

Actuating means 
Fluid motor 

Electric motor 

Jaw structure  

Vacuum or magnetic   

Tool 
Welding  

Spray painting or coating  

Inspection   

Compliance   

SENSING DEVICE (46) Optical   

COUNTER BALANCE (48)    

PROTECTIVE DEVICE (49)    

MISCELLANEOUS (50)    

 



Asian Journal of Innovation and Policy (2018) 8.1:000-000 

15 

 

2. Cross-Impact Matrix Construction 
 
To construct a cross-impact matrix for robot technologies, we carried out 

ARM on the co-classification information of patents classified to the 10 

subclasses. We used the data-mining package SAS E-miner 9.3 and selected an 

a priori algorithm to search for rules. Cross-impact index for each technology 

pair is identified with the derived confidence values. Table 5 shows the 10 robot 

technology pairs in decreasing order of cross-impact values. Technology A 

influences technology B and Impact(A, B) is the cross-impact index of tech-

nology A on technology B. Also, the value of technology A and technology B 

indicated on each order in Table 5 is the subclass in which they are affiliated 

into. 
 

The technology pair of technology 19 (DRIVE SYSTEM FOR arm) in Table 

5 effects technology 14 (arm MOVEMENT (SPATIAL)) with a cross-impact 

value of 0.3590, which is the highest cross-impact. This means that among the 

patents included in technology 19, 35.9% are also classified in technology 14. 

Technology 19 is related to mechanical driving components of robotic arm joints. 

Technology 14 refers to trajectory (motion) generation of robot arm joints by 

moving in various coordinate systems. These technologies are related to driving 

mechanism design and motion generation, which have a high degree of mutual 

relatedness.
 

 
Table 5 Robot technology pairs with high cross-impact 

Rank Technology A Technology B Impact(A,B) 

1 19 14 0.3590 

2 27 19 0.3436 

3 14 19 0.3214 

4 46 30 0.3104 

5 14 2 0.2946 

6 46 2 0.2663 

7 2 30 0.2628 

8 48 14 0.2584 

9 14 30 0.2516 

10 48 19 0.2472 

 
The pair of technology 27 (arm PART) effecting technology 19 has the next 

highest cross-impact value. Technology 27 is related to components of robot 

joint design. The joints are divided into shoulder, elbow and wrist and involve a 

combination of driving technologies, such as motor, reducer, controller and link.
 

The cross-impact matrix of the robot technology, created using the cross-

impact index of all robot technology pairs, is in Table 6. 
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Table 6 Cross-impact matrix of robot technology 

Technology
 

1
 

2
 

14
 

19
 

27
 

30
 

46
 

48
 

49
 

50
 

1
 

1.0000 0.2390 0.0906 0.0464 0.0532 0.1042 0.2106 0.0215 0.0340 0.0453 

2
 

0.1362 1.0000 0.2343 0.1427 0.0704 0.2628 0.1872 0.0181 0.0284 0.0232 

14
 

0.0649 0.2946 1.0000 0.3214 0.1502 0.2516 0.0804 0.0373 0.0422 0.0170 

19
 

0.0372 0.2004 0.3590 1.0000 0.2421 0.1831 0.0390 0.0399 0.0209 0.0218 

27
 

0.0605 0.1403 0.2381 0.3436 1.0000 0.2227 0.0541 0.0309 0.0386 0.0283 

30
 

0.0376 0.1665 0.1268 0.0827 0.0708 1.0000 0.1383 0.0119 0.0217 0.0123 

46
 

0.1708 0.2663 0.0909 0.0395 0.0386 0.3104 1.0000 0.0193 0.0202 0.0239 

48
 

0.1067 0.1573 0.2584 0.2472 0.1348 0.1629 0.1180 1.0000 0.0337 0.0393 

49
 

0.1230 0.1803 0.2131 0.0943 0.1230 0.2172 0.0902 0.0246 1.0000 0.0533 

50
 

0.2105 0.1895 0.1105 0.1263 0.1158 0.1579 0.1368 0.0368 0.0684 1.0000 

 

3. Weights Derivation 
 
For deriving the weights of the evaluation criteria for operating TOPSIS, the 

co-classification frequency matrix was constructed as shown in Table 7. As 

explained in Section III.3, the co-classification frequency matrix is the 

supermatrix. The weighted supermatrix (Table 8) was derived by normalizing 

supermatrix, whose column sums are one. The limit supermatrix (Table 9) was 

constructed by converging the columns of the weighted supermatrix the same. 

The columns of the limit supermatrix represent the weight of each robot 

technology, considering all the direct and indirect relationships.
 

 
Table 7 Co-classification frequency matrix 

Technology
 

1
 

2
 

14
 

19
 

27
 

30
 

46
 

48
 

49
 

50
 

1
 

0
 

211
 

80
 

41
 

47
 

92
 

186
 

19
 

30
 

40
 

2
 

211
 

0
 

363
 

221
 

109
 

407
 

290
 

28
 

44
 

36
 

14
 

80
 

363
 

0
 

396
 

185
 

310
 

99
 

46
 

52
 

21
 

19
 

41
 

221
 

396
 

0
 

267
 

202
 

43
 

44
 

23
 

24
 

27
 

47
 

109
 

185
 

267
 

0
 

173
 

42
 

24
 

30
 

22
 

30
 

92
 

407
 

310
 

202
 

173
 

0
 

338
 

29
 

53
 

30
 

46
 

186
 

290
 

99
 

43
 

42
 

338
 

0
 

21
 

22
 

26
 

48
 

19
 

28
 

46
 

44
 

24
 

29
 

21
 

0
 

6
 

7
 

49
 

30
 

44
 

52
 

23
 

30
 

53
 

22
 

6
 

0
 

13
 

50
 

40
 

36
 

21
 

24
 

22
 

30
 

26
 

7
 

13
 

0
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Table 8 Weighted supermatrix 
Technology

 
1
 

2
 

14
 

19
 

27
 

30
 

46
 

48
 

49
 

50
 

1
 

0.0000 0.1234 0.0514 0.0324 0.0524 0.0562 0.1743 0.0843 0.1101 0.1839 

2
 

0.2831 0.0000 0.2341 0.1754 0.1216 0.2492 0.2721 0.1264 0.1606 0.1638 

14
 

0.1070 0.2123 0.0000 0.3139 0.2055 0.1896 0.0931 0.2051 0.1904 0.0948 

19
 

0.0548 0.1293 0.2552 0.0000 0.2970 0.1238 0.0400 0.1966 0.0849 0.1092 

27
 

0.0632 0.0639 0.1191 0.2118 0.0000 0.1058 0.0395 0.1067 0.1101 0.1006 

30
 

0.1230 0.2381 0.1997 0.1604 0.1922 0.0000 0.3168 0.1292 0.1927 0.1379 

46
 

0.2494 0.1697 0.0640 0.0339 0.0468 0.2069 0.0000 0.0927 0.0803 0.1178 

48
 

0.0253 0.0165 0.0296 0.0349 0.0266 0.0177 0.0194 0.0000 0.0229 0.0316 

49
 

0.0404 0.0257 0.0336 0.0184 0.0335 0.0323 0.0206 0.0281 0.0000 0.0603 

50
 

0.0539 0.0209 0.0134 0.0189 0.0245 0.0185 0.0241 0.0309 0.0482 0.0000 

 
Table 9 Limit supermatrix 

Technology
 

1
 

2
 

14
 

19
 

27
 

30
 

46
 

48
 

49
 

50
 

1
 

0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 

2
 

0.1784 0.1784 0.1784 0.1784 0.1784 0.1784 0.1784 0.1784 0.1784 0.1784 

14
 

0.1619 0.1619 0.1619 0.1619 0.1619 0.1619 0.1619 0.1619 0.1619 0.1619 

19
 

0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 0.1316 

27
 

0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 

30
 

0.1704 0.1704 0.1704 0.1704 0.1704 0.1704 0.1704 0.1704 0.1704 0.1704 

46
 

0.1113 0.1113 0.1113 0.1113 0.1113 0.1113 0.1113 0.1113 0.1113 0.1113 

48
 

0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 

49
 

0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 

50
 

0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 0.0228 

 

4. Core Robot Technology Identification 
 
To investigate the core robot technology, TOPSIS was carried out on the 

cross-impact matrix derived in Section 4.2. Table 10 shows the weighted 

normalized matrix reflecting the weights of each robot technology derived in 

Section 4.3 on all elemental values of the cross-impact matrix.
 

The TOPSIS procedure calculates the positive ideal technology (S+), the 

negative ideal technology (S-), the distance between each technology and the 

positive ideal technology (Di
+), the distance between each technology and the 

negative ideal technology (Di
-) and the similarity between each technology and 

the positive ideal technology (Ci). Table 11 shows the overall result.
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Table 10 Weighted normalized matrix 
Technology

 
1
 

2
 

14
 

19
 

27
 

30
 

46
 

48
 

49
 

50
 

1
 

0.0745 0.0351 0.0121 0.0052 0.0047 0.0145 0.0217 0.0006 0.0011 0.0012 

2
 

0.0101 0.1470 0.0313 0.0160 0.0062 0.0366 0.0193 0.0005 0.0009 0.0006 

14
 

0.0048 0.0433 0.1337 0.0360 0.0132 0.0351 0.0083 0.0010 0.0014 0.0005 

19
 

0.0028 0.0295 0.0480 0.1121 0.0213 0.0255 0.0040 0.0011 0.0007 0.0006 

27
 

0.0045 0.0206 0.0318 0.0385 0.0881 0.0310 0.0056 0.0009 0.0013 0.0008 

30
 

0.0028 0.0245 0.0170 0.0093 0.0062 0.1393 0.0143 0.0003 0.0007 0.0003 

46
 

0.0127 0.0391 0.0122 0.0044 0.0034 0.0432 0.1031 0.0005 0.0007 0.0007 

48
 

0.0080 0.0231 0.0345 0.0277 0.0119 0.0227 0.0122 0.0280 0.0011 0.0011 

49
 

0.0092 0.0265 0.0285 0.0106 0.0108 0.0303 0.0093 0.0007 0.0328 0.0015 

50
 

0.0157 0.0279 0.0148 0.0142 0.0102 0.0220 0.0141 0.0010 0.0022 0.0274 

 
As shown in Table 11, technology 14 (arm MOVEMENT) resulted in the most 

important technology with respect to cross-impact between technologies. 

Technologies 2 (arm MOTION CONTROLLER), 30 (END EFFECTOR) and 

19 (DRIVE SYSTEM FOR arm) are also important in that order. It is clear that 

these technologies have weighty effects on other technologies and are 

considered core robot technologies. The least important technologies are 50 

(MISCELLANEOUS), 49 (PROTECTIVE DEVICE) and 48 (COUNTER 

BALANCE) in that order. This result is acceptable because technologies 2 and 

19 are component technologies for designing robot joints and the connection of 

joints with links forms a robot arm and an end effector. We can thus conclude 

that technology 14 is directly related to technologies 2 and 19. Technologies 48 

and 49 are secondary technologies for enhancing the performance or the 

dexterity of a robotic arm.
 

 
Table 11 TOPSIS result for robot technology 

Technology
 

     Rank
 

1
 

0.0745 0.0028 0.2652 0.0753 0.2212 7
 

2
 

0.1470 0.0206 0.2250 0.1313 0.3686 2
 

14
 

0.1337 0.0121 0.2220 0.1298 0.3688 1
 

19
 

0.1121 0.0044 0.2367 0.1157 0.3284 4
 

27
 

0.0881 0.0034 0.2456 0.0949 0.2787 6
 

30
 

0.1393 0.0145 0.2479 0.1255 0.3361 3
 

46
 

0.1031 0.0040 0.2464 0.1053 0.2994 5
 

48
 

0.0280 0.0003 0.2571 0.0452 0.1496 8
 

49
 

0.0328 0.0007 0.2612 0.0418 0.1379 9
 

50
 

0.0274 0.0003 0.2661 0.0355 0.1178 10
 

 

S  S 
iD

iD
iC
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The results of this analysis can be used in corporate or national strategies for 

robot technology development. For example, in order to attain technological 

superiority in the robot industry, technologies related to arm MOVEMENT 

(SPATIAL) must be reinforced as a priority. This is because, if competitive 

superiority is achieved in this technology, the technological capability of other 

robot technologies can be easily reinforced. Furthermore, since the growth and 

development of one technology affect those of others, it can be used to predict 

technological progress. For example, technologies such as arm MOVEMENT 

(SPATIAL) or arm MOTION CONTROLLER have a weighty impact on the 

development of robot technology on the whole. Thus, the rapid development of 

these technologies is expected to lead to progress in overall robot technology.
 

 

 

V. Conclusion 
 
We proposed a systematic approach for identifying core robot technologies 

from a cross-impact perspective. We applied ARM to a situation where a patent 

was part of two robot technology subclasses and used the resulting confidence 

values to construct a cross-impact matrix. For weighting, we applied ANP to the 

co-classification frequency matrix and used the derived limit priority value. We, 

then, used TOPSIS to identify the core robot technology from the perspective of 

its impact on robot technologies on the whole. In the application of TOPSIS, we 

redefined the rows and columns of the cross-impact matrix as the alternatives 

and the criteria of a decision-making problem, respectively. To verify the 

validity and the usefulness of the suggested approach, we conducted a case study 

of the USPTO database.  

The contributions of this paper are as follows. First, we proposed a systematic 

method to identify core robot technologies. Second, we introduced ARM for 

patent analysis. ARM is a representative data mining technique for information 

search in large databases. There is an advantage to not requiring the 

implementation of a separate program for patent analysis, as the cross-impact 

index can be derived through a commercial package for ARM. Third, for the 

identification of core robot technology, we used ANP and TOPSIS, an MCDM 

method. Not only can cross-impact on overall robot technologies be considered 

through these, they can also reflect individual values of robot technologies. 

Finally, our proposed approach can provide useful information to formulate a 

technological strategy or policy for robot technology innovation. In particular, 

it can be utilized to identify the robot technology that ought to be prioritized to 

increase the competitiveness of a corporation in robot technology and can thus 

predict the progress of the field of robot technology.  

Notwithstanding these contributions, this study has several limitations and 

calls for future research. First, the data collection period is limited to 2012. 
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Actually, our research had plan to identifying core robot technologies before the 

4th industrial revolution and then identifying core robot technologies after the 

4th industrial revolution. By comparing the core technologies before and after 

the 4th Industrial Revolution, the dynamic changes of robot can be analyzed. 

This is our future research topic. Second, from the perspective of technology 

classification, USPC is used. However, technology classification is changing 

according to the technological development. Therefore, instead of “static” 

classification such as USPC, “flexible” classification, which can be obtained by 

text mining or data mining of patent documents, can be applied as a new 

classification. Third, patent data is very useful in analyzing core technologies, 

but it does not include all the technologies. In future research, it is necessary to 

analyze additional academic papers or technical reports. 
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